Математика ЕГЭ
Русский язык ЕГЭ
Математика 5-7
Математика ОГЭ
Информатика
Физика
Обществознание
Кликните, чтобы открыть меню

Реальные варианты ЕГЭ 2020

1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения

Тренировочные варианты «Школково». Основная волна. Вариант 4 (29-32 номер)

Задание 1


Система, изображенная на рисунке, находится в равновесии. Стержень \(AC\) невесом и нить нерастяжима и невесома. К точкам \(C\) и \(B\) соответственно подвешены грузы \(m_1=0,1\) кг и \(m_2=0,2\) кг. Найти длину стержня АС, если \(AB=25\) см, углы \(\alpha=45^\circ\), \(\beta=15^\circ\), а масса перекинутого блока \(M=0,2\) кг. Ответ дайте в см и округлите до десятых.


Запишим правило моментов относительно точки А. В точке \(B\) действует только сила натяжения нити равная силе тяжести \(m_1g\), в точке \(C\) действует вниз сила натяжения нити равная силе тяжести \(m_2g\) и сила натяжения нити, действующая вверх, равная \(Mg\) \[m_1g \sin \alpha \cdot AB+ m_2g \sin \alpha \cdot AC = Mg\sin (180-\alpha-\beta)\cdot\] Откуда \(AC\) \[AC=\dfrac{m_1g \sin \alpha \cdot AB}{Mg\sin (\alpha+\beta)-m_2g \sin \alpha \cdot AC}=\dfrac{0,1 \text{ кг}\cdot 10\text{ Н/кг}\cdot \sin 45^\circ\cdot 25\text{ см}}{0,2\text{ кг}\cdot 10\text{ Н/кг}\cdot \sin 60^\circ-0,2\text{ кг}\cdot 10\text{ Н/кг}\cdot \sin 45^\circ}\approx 55,6\text{ см}\]

Ответ: 55,6

Задание 2


Объём 0,1 литра водорода нагревают при постоянном давлении от 300 до 3000 К. При высоких температурах молекулы водорода распадаются на отдельные атомы. На графике показана зависимость доли распавшихся молекул от температуры. Чему равен конечный объём газа? Ответ дайте в литрах.


Запишем уравнение Клапейрона–Мендлеева для первоначального и конечного состояний: \[pV_1=\nu_1RT_1\] \[pV_2=\nu_2RT_2\] где \(\nu\) – количества вещества, \(T\) – температура, \(V\) – объем.
В данном процессе молекулярый водород (2 атома) распадается а атомарный (1 атом), при этом распадается 20% от начального количества \(\alpha =\dfrac{1}{5}\) при этом из одной молекулы образуется 2 атома водорода, то есть всего образовалось \(2\alpha \nu_1\), тогда количество нераспавшихся молекул равно \((1-\alpha)\nu_1\), откуда количества вещества в конечном состоянии: \[\nu_2=2\alpha\nu_1+(1-\alpha)\nu_1=(1+\alpha)\nu_1 \quad (1)\] Найдем из первых двух уравнений отношение объемов с учетом (1) \[\dfrac{V_2}{V_1}=\dfrac{(1+\alpha)\nu_1T_2}{\nu_1T_1}\Rightarrow V_2= 1,2\cdot 0,1\text{ л}\dfrac{3000\text{ К}}{300\text{ К}}=1,2\text{ л}\]

Ответ: 1,2

Задание 3


На столе закреплен непроводящий наклонный стержень. На него нанизана бусина с зарядом \(q\) и массой \(m\), которая может двигаться без трения. Ниже на стержне закреплена бусина такого же по величине заряда \(q\), но с нулевой массой. Расстояние между бусинами \(l\), угол \(\alpha=30^\circ\). На рисунке показать все силы, действующие на верхнюю бусину. Найти заряд \(q\), ответ в общем виде.


Запишем второй закон Ньютона на ось, сопадающую с направлением стержня \[mg \sin \alpha = k\dfrac{q^2}{l^2} \Rightarrow q=l\sqrt{\dfrac{mg\sin \alpha}{k}}\]

Ответ: $q=l\sqrt{\dfrac{mg\sin \alpha}{k}}$

Задание 4


Математический маятник раскачивается с некоторой амплитудой \(A\) в плоскости рисунка. Равновесное положение нити маятника находится на расстоянии \(L= \sqrt{5}\) см от переднего фокуса тонкой положительной линзы. Расстояние между изображениями маятника, лежащими на главной оптической оси линзы, равно \(\Delta\)=2 см, а оптическая сила линзы \(D=5\) дптр. Найти амплитуду колебаний. Ответ дайте в см и округлите до тысячных


Запишем формулу тонкой линзы для ближайшей точки к линзе колебаний маятника и самой дальней точки. \[D=\dfrac{1}{F+L-A}+\dfrac{1}{f_1}\] \[D=\dfrac{1}{F+L+A}+\dfrac{1}{f_2}\] где \(f_1\) и \(f_2\) – расстояние от линзы до изображений.
а по условию задачи \(f_1-f_2=\Delta\). Из первых двух уравнений выразим \(f_1\) и \(f_2\) и подставим в третье \[\dfrac{1}{f_1}=D-\dfrac{1}{F+L-A} \Rightarrow f_1= \dfrac{F+L-A}{D(F+L-A)-1}\] \[f_2=\dfrac{F+L+A}{D(F+L+A)-1}\] \[\Delta =\dfrac{F+L-A}{D(F+L-A)-1}-\dfrac{F+L+A}{D(F+L+A)-1}=\dfrac{(D(F+L+A)-1)(F+L-A)}{D(F+L-A)-1} -\dfrac{(D(F+L-A)-1)(F+L+A)}{D(F+L+A)-1}\] \[\Delta = \dfrac{2A}{(D(F+L+A)-1)(D(F+L-A)-1)}=\dfrac{2AF^2}{(L-A)(L+A)}=\dfrac{2AF^2}{L^2-A^2}\] Составляем квадратное уравнение \[\Delta A^2 +2AF^2+\Delta L^2=0\] Находим дискриминант \[D=4F^4-4\Delta^2L^2\] отрицательные корни нам не подходят, следовательно, корень данного уравнения \[A=\dfrac{-2F^2+2\sqrt{F^4-\Delta ^2 L^2}}{2\Delta }=\dfrac{20^2\text{ см$^2$}+\sqrt{20^4\text{ см$^4$}+2^2\text{ см$^2$}\cdot 5\text{ см$^2$}}}{2\text{ см}}\approx 0,0125\text{ см}\]

Ответ: 0,0125